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ABSTRACT

This work interprets the internal representations of deep neural networks trained for classi-
fying diseased tissue in 2D mammograms. We propose an expert-in-the-loop interpretation
method to label the behavior of internal units in convolutional neural networks (CNNs). Ex-
pert radiologists identify that the visual patterns detected by the units are correlated with
meaningful medical phenomena such as mass tissue and calcificated vessels. We demonstrate
that several trained CNN models are able to produce explanatory descriptions to support
the final classification decisions. We view this as an important first step toward interpreting
the internal representations of medical classification CNNs and explaining their predictions.

Keywords: medical image understanding, deep learning for diagnosis, interpretable ma-
chine learning, expert-in-the-loop methods

1. PURPOSE

State-of-the-art convolutional neural networks (CNNs) can now match and even supersede
human performance on many visual recognition tasks;1,2 however, these significant ad-
vances in discriminative ability have been achieved in part by increasing the complexity of
the neural network model which compounds computational obscurity.3–6 CNN models are
often criticized as black boxes because of their massive model parameters. Thus, lack of
intepretability prevents CNNs from being used widely in clinical settings and for scientific
exploration of medical phenomena.7,8

Deep learning based cancer detection in 2D mammograms has recently achieved near
human levels of sensitivity and specificity, as evidenced by the large-scale Digital Mammog-
raphy DREAM Challenge.9 Recent computer aided diagnostic systems have also applied
advanced machine learning to a combination of imaging data, patient demographics, and
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medical history with impressive results.8 However, applications such as breast cancer diag-
nosis and treatment heavily depend on a sense of trust between patient and practitioner,
which can be impeded by black-box machine learning diagnosis systems. Thus, automated
image diagnosis provides a compelling opportunity to reevaluate the relationship between
clinicians and neural networks. Can we create networks that explain their decision making?
Instead of producing only a coarse binary classification, e.g. does a scan reveal disease or
not, we seek to produce relevant and informative descriptions of the predictions a CNN
makes in a format familiar to radiologists. In this paper, we examine the behavior of the in-
ternal representations of CNNs trained for breast cancer diagnosis. We invite several human
experts to compare the visual patterns used by these CNNs to the lexicon used by practicing
radiologists. We use the Digital Database for Screening Mammography (DDSM)10 as our
training and testing benchmark.

Contributions

This work is the first step toward creating neural network systems that interact seamlessly
with clinicians. Our principal contributions, listed below, combine to offer insight and
identify commonality between deep neural network pipelines and the workflow of practicing
radiologists. Our contributions are as follows:

• We visualize the internal representations of the CNNs trained on cancerous, benign,
benign without callback, and normal mammograms;

• We develop an interface to obtain human expert labels for the visual patterns used by
the CNNs in cancer prediction;

• We compare the internal representations to the BI-RADS lexicon,11 showing that
many interpretable internal CNN units detect meaningful factors used by radiologists
for breast cancer diagnosis.

2. METHODS

To gain a richer understanding of which visual primitives CNNs use to predict cancer,
we fine-tuned several strongly performing networks on training images from the Digital
Database for Screening Mammography (DDSM).10 We then evaluated the visual primitives
detected by individual units that emerged for each fine-tuned model using Network Dissec-
tion, a technique to visualize the favorite patterns detected by each unit.12 Three authors
who are practicing radiologists or experts in this area manually reviewed the unit visual-
ization and labeled the phenomena each unit identified. Finally, we compared the named
phenomena used by internal units of each CNN to items in the BI-RADS lexicon.11 Here
we denote the convolutional filters at each layer as the unit, as opposed to the ’neuron’, to
disambiguate them from the biological entity. The unit visualization is the set of the top
activated images segmented by the unit’s feature map.

2.1 Dataset

We conduct our experiments with images from the Digital Database for Screening Mammog-
raphy, a dataset compiled to facilitate research in computer-aided breast cancer screening.
DDSM consists of 2,500 studies, each including two images of each breast, patient age,
ACR breast density rating, subtlety rating for abnormalities, ACR keyword description of
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abnormalities, and information about the imaging modality and resolution. Labels include
image-wide designations (e.g., cancerous, benign, benign without callback, and normal) and
pixel-wise segmentations of lesions.10

For the experiments in the following sections, we divided the DDSM dataset scans into
80% train, 10% validation, and 10% test partitions. All images belonging to a unique patient
are in the same split, to prevent training and testing on different views of the same breast.

2.2 Network Architectures

We adapted several well-known image classification networks for breast cancer diagnosis
as shown in Table 1. We modified the final fully connected layer of each architecture to
have two classes corresponding to a positive or negative diagnosis. Network weights were
initialized using the corresponding pretrained ImageNet13 models and fine-tuned on DDSM.
We trained all models in the PyTorch14 framework using stochastic gradient descent (SGD)
with learning rate 0.0001, momentum 0.9, and weight decay 0.0001.

Architecture AUC
AlexNet15 0.8632
VGG-1616 0.8929

Inception-v34 0.8805
ResNet-1525 0.8757

Table 1: The network architectures used and their performance as the AUC on the validation
set.

Figure 1: GoogleNet Inception-v3 fine-tuned with local image patches and their labels.
Multiple patches (overlapping with a sliding window) are extracted from each image and
then passed through a CNN with the local patch label determined by the lesion masks from
DDSM. After fine-tuning each network we tested performance on the task of classifying
whether the patch contains a malignant lesion. Performance on out-of-sample prediction
was as follows: Area Under Curve (AUC) 0.8805, Area Under Precision-Recall Curve: 0.325.
We could correctly detect 68% of positive patch examples (radiologist’s positive detection
rate ranges between 0.745 and 0.92317,18), while only incorrectly predicting as positive 2%
of the negative examples.

Figure 1 illustrates how we prepared each mammogram for training and detection. Be-
cause of the memory requirements of processing an high-resolution image with any neural
network, we split the mammograms into patches then process image patches instead. We ap-
plied a sliding window at 25% the size of a given mammogram with a 50% patch stride. This
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gave us a set of image patches for each mammogram that may or may not have contained
a cancerous lesion. The ground truth label for each mammogram patch was calculated as
positive for cancer if at least 30% of the lesion was contained in the image patch or at least
30% of the image patch was covered by a lesion; all other patches were assigned a negative
label. Lesion locations were determined from the lesion segmentation masks of DDSM.

2.3 Network Dissection

Network Dissection (Net Dissect) is a recent method proposed for assessing how well a
visual concept is disentangled within CNNs.12 Network Dissection defines and quantifies
the intepretability as a measure of how well individual units align with sets of human-
interpretable concepts.

(a) Illustration of how Network Dissection proceeds for a single instance. Above, one unit is probed
to display the Region of Interest (ROI) in the evaluated image responsible for that unit’s activation
value. ROIs may not line up as directly as shown in this figure, please see Bau et al.12 for a
complete description of this process.

(b) Illustration of how Network Dissection proceeds for all units of interest in a given convolutional
layer. All images from a test set are processed in the manner of Fig. 2a. The top activating
test images for each unit are recorded to create the visualization of a unit’s top activated visual
phenomena. Each top activating image is segmented by the upsampled and binarized feature map
of that unit.

Figure 2: Illustration of Network Dissection for identifying exploited visual phenomena by
a CNN of interest.
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Figure 2 demonstrates at a high level how the Net Dissect works to interpret the units
at the target layer of the network. We employed our validation split of DDSM to create
visualizations for each unit in the final convolutional layer of each evaluated network. For
our ResNet experiments we also evaluated the second to last convolutional layer due to the
depth of that network. Because of the hierarchical structure of CNNs, the final convolutional
layer is the layer that will contain the high-level semantic concepts, which are more likely to
be aligned with the visual taxonomy used by radiologists than low-level gradient features.
The Net Dissect approach to the unit visualization only applies to convolutional network
layers due to their maintenance of spatial information.

Figure 2b shows how we created the unit visualizations for our analysis in Sections 2.4
and 3. We passed every image patch from all mammograms in our test set through each
of the four networks. For each unit in the target layer, the convolution layer we were
investigating, we recorded the unit’s max activation value as the score and the ROI from
the image patch that caused the measured activation. To visualize each unit (Figs. 3 and 4),
we display the top activating image patches in order sorted by their score for that unit. Each
top activating image is further segmented by the upsampled and binarized feature map of
that unit to highlight the highly activated image region.

2.4 Human Evaluation of Visual Primitives used by CNNs

To further verify the visual primitive discovered by the networks, we created a web-based
survey tool to solicit input from expert readers. The expert readers consisted of two radiolo-
gists specialized in breast imaging and one medical physicist. A screenshot from the survey
tool is shown in Figure 3. The survey provided a list of 40 to 50 units culled usually from
the final layer of the neural network. The neural network often had many more units, too
many for exhaustive analysis with the limited user population. Thus the units that were
selected were composed partly of the top activating patches that all or mostly contained
cancer and partly from a random selection of other patches.

The readers were able to see a preview of each unit, which consisted of several image
patches that highlighted the region of interest that triggered the unit to activate most
strongly. From this preview, the readers were able to formulate an initial hypothesis of what
the unit was associated with. The readers could click through each preview to select units
that could be interpreted, and they were brought to a second page dedicated specifically to
the unit, which showed additional patches as well as the context of the entire mammogram,
as shown in Figure 3. On this page, users could then comment on the unit in a structured
report, indicating if there was a distinct phenomenon associated with the unit and its
relationship to breast cancer. The web-based survey saved results after each unit and could
be accessed over multiple sessions to avoid reader fatigue.

Some of the units shown had no clear connection with breast cancer and would appear
to be spurious. Still other units presented what appeared to be entangled events, such as
mixtures of mass and calcification, that were associated with malignancy but in a clearly
identifiable way. However, many of the units shown appeared to be a clean representation
of a single phenomenon known to be associated with breast cancer.

3. RESULTS

We compared the expert-annotated contents of 134 units from four networks to the lexicon
of the BI-RADS taxonomy.7,11 This qualitative evaluation was designed to estimate the

5



Figure 3: Web-based Survey Tool: This user interface was used to ask the expert readers
about the units of interest. The survey asked questions such as, “Do these images show
recognizable phenomena?” and, “Please describe each of the phenomena you see. For each
phenomenon please indicate its association with breast cancer. In the screenshot above, one
expert has labeled the unit’s phenomena as ‘Calcified Vessels’.

overlap between the standard system radiologists use to diagnose breast cancer and the
visual primitives used by the trained CNNs.

Direct classification of BI-RADS entities has long been a topic of interest in machine
learning for mammography.19 Our experiments differ from direct classification because our
training set was constructed with simple positive/ negative labels instead of detail BI-RADS
categories. In this work we chose a well-understood medical event, the presence of cancer
in mammograms, to evaluate if unit visualization is a promising avenue for discovering
important visual phenomena in less well-understood applications. Our results, shown in
Fig. 4, show that networks trained to recognize cancer end up using a large percentage of
the BI-RADS categories even though the training labels were simply cancer/ no cancer.

Units in all networks identify advanced cancers, large benign masses, and several kinds of
obvious calcifications. Encouragingly, many units also identify important associated features
such as spiculation, breast density, architectural distortions, and the state of tissue near the
nipple. Several units in Fig. 4 show that the CNNs use breast density and parenchymal
patterns to make predictions. This network behavior could be used to find a new compu-
tational perspective on the relationship between breast density, tissue characteristics, and
cancer risk, which has been a popular research topic for the last 25 years.20–22

4. CONCLUSION

In this exploratory study, we were able to show that many internal units of a deep network
identify visual concepts used by radiologists. Indeed, Fig. 4 shows significant overlap with
the BI-RADS lexicon. However, some units had no identified connection with breast cancer,
and yet other units identified entangled events. In future work, we will investigate both the
units with nameable phenomena and those which appear to be spurious to identify if there
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Figure 4: The table above shows some of the labeled units and their interpretations. The
far-left column lists the general BI-RADS category associated with the units visualized in
the far-right column. The second-left column displays the expert annotation of the visual
event identified by each unit, summarized for length. The third-left column lists the network,
convolutional layer, and unit’s unit ID number.
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are medically relevant visual events predictive of cancerous lesions that are not used by
clinicians. We will also explore how to use the unit labeling technique presented in this
paper to generate natural language explanations of the predictions made by diagnosing
neural networks.
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